critical field is applied (Meyer \& Tagland, 1956). No definite evidence for magnetic ordering in the compound AuMn_{3} has so far been found (Meyer, 1959).

Powder photographs of the material, after annealing at $500^{\circ} \mathrm{C}$ for 24 hours, were initially indexed on a tetragonal cell with $a=3.328 \AA$ and $C=8.539 \AA$. This indexing did, however, leave a few weak unexplained lines and density determinations gave 1.48 formula units per unit cell. A larger cell with a increased by a factor of $V 2$ allowed all the observed lines to be indexed and gave 2.96 formula units per unit cell. The parameters of the larger cell were: $a=$ $4.706, C=8.539 \AA$. Most of the observed lines satisfied the face-centred selection rule and lines with $l=3 n$ were strong.

The dimensions of the cell and its relationship to $\mathrm{Au}_{2} \mathrm{Mn}$ suggested that the structure must be of the form:

$$
\begin{aligned}
& \text { Au at }[0,0,0],\left[\frac{1}{2}, 0, \frac{1}{2}\right],\left[0, \frac{1}{2}, \frac{1}{2}\right] \\
& \mathrm{Mn} \text { at }\left[\frac{1}{2}, \frac{1}{2}, 0\right],\left[\frac{1}{2}, \frac{1}{2}, \pm z_{1}\right]
\end{aligned}
$$

Table 1. $\sin ^{2} \theta$ values, using copper $K \alpha$ radiation, and observed and calculated structure factors for AuMn_{3} assuming $z=\frac{1}{3}$.
$\left.\begin{array}{ccccc}\begin{array}{c}\text { Reflexion } \\ 002\end{array} & \begin{array}{c}\left(\sin ^{2} \theta\right)_{o} \\ 111\end{array} & 0 \cdot 0324 & \left(\sin ^{2} \theta\right)_{c} & 0 \cdot 0325\end{array}\right)$

Mn at $\left[0,0, \pm z_{2}\right],\left[\frac{1}{2}, 0, \frac{1}{2} \pm z_{2}\right],\left[0, \frac{1}{2}, \frac{1}{2} \pm z_{2}\right]$ where z_{1} and z_{2} are $\sim \frac{1}{3}$.
This structure would be face centred if the Mn atom at [$\frac{1}{2}, \frac{1}{2}, 0$] were replaced by gold.

The line intensities were determined by measuring the area of the traces from a Philips powder diffractometer. Anomalies, due to preferred orientation in the closely packed powder, were eliminated by dilution with gum tragacanth. Observed and calculated structure factors for $z_{1}=z_{2}=\frac{1}{3}$ are shown in Table 1. Where reflexions overlapped, F_{0} for the strongest line was estimated by subtracting the calculated intensity of the weaker lines from the total observed intensity. Copper radiation was used and all observed spectra up to 313 are recorded in the table. Selected lines at higher angles were measured to fix z within as close limits as possible. From the results it is estimated that assuming $z_{1}=z_{2}$, the best value of z is 0.333 ± 0.007. The results are not sufficiently precise to make a distinction between z_{1} and z_{2} possible.

The analysis shows the close similarity between the structures of $\mathrm{Au}_{2} \mathrm{Mn}$ and AuMn_{3} : if in $A u \mathrm{Mn}_{3}$ the manganese atom at $\left[\frac{1}{2} \frac{1}{2} 0\right]$ were replaced by gold the structure would be similar to that of $\mathrm{Au}_{2} \mathrm{Mn}$ but with manganese at the gold sites and gold at the manganese sites. There are, however, important differences in the environment of the manganese atoms, which would carry the magnetic moment in a magnetically ordered structure. In $\mathrm{Au}_{2} \mathrm{Mn}$ the shortest $\mathrm{Mn}-\mathrm{Mn}$ distance, along [100] and [010] directions, is $3.36 \AA$. In AuMn_{3} the shortest $\mathrm{Mn}-\mathrm{Mn}$ distances are the nearestneighbour distances, in the approximately close-packed (100) and (010) planes, of 2.75 or $2.85 \AA$.

This work has been carried out as part of a research programme on 'Structural Changes in Antiferromagnetic Materials' supported by the Atomic Energy Research Establishment, Harwell.

References

Hall, E. O. \& Royan, J. (1959). Acta Cryst. 12, 607.
Herpin, A., Meriel, P. \& Meyer, A. J. P. (1958). C. R. Acad. Sci., Paris, 246, 3170.
Meyer, A. J. P. (1959). J. Phys. Radium, 20, 430.
Meyer, A. J. P. \& Tagland, P. (1956). J. Phys. Radium, 16, 341.
Raub, E., Zwicker, U. \& Baur, H. (1953). Z. Metallk. 44, 312.

Acta Cryst. (1965). 19, 477

Crystal data (I) for some bile acid derivatives*. By Dorita A. Norton and Barbara Haner, Roswell Park Memorial Institute, Buffalo, New York 14203, U.S.A.

(Received 21 January 1965 and in revised form 2 February 1965)

Single-crystal data for thirteen bile acid derivatives were collected on a General Electric XRD-5 X-ray diffraction unit equipped with a single-crystal orienter. Reciprocal lattice measurements were made using $\mathrm{Cu} K \alpha$ radiation. Space groups were determined by systematic absences and considerations of optical activity. Densities were determined by flotation and used to calculate the number of molecules

[^0]per unit cell. All of the compounds studied were crystallized from solution, and, in most cases, evaporation at room temperature gave a yield of good single crystals. The calculated molecular weights of compounds $2,5,8,11$, and 13 show that solvent of crystallization is present and that this solvent is water in 5,11 , and 13. The unusually high discrepancy between the observed and calculated densities of compound 9 probably results from the inaccuracy of the density determination of the crystals, which were small, extremely thin laths. The crystal data are given in Table 1. No further work on these compounds is contemplated.

Table 1. Crystal data for thirteen bile acid derivatives

	1				
Formula	$\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{3}$	$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{4} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{4}$	4	$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{4}$

1. 22,23-Bisnor-5-cholenic acid-3 β-ol
2. 5β-Cholanic acid- $3 \alpha, 12 \alpha$-diol . $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (deoxycholic acid. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$)
3. 5β-Cholanic acid- $3 \alpha, 6 \alpha$-diol
4. 5β-Cholanic acid- $3 \alpha, 7 \beta$-diol
5. 5β-Cholanic acid- $3 \alpha, 7 \alpha, 12 \alpha$-triol . $4 \mathrm{H}_{2} \mathrm{O}$ (cholic acid hydrate)

Formula	$\stackrel{6}{6}_{24}^{\mathrm{H}_{42} \mathrm{O}}$	$\stackrel{7}{\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{Na}}$	$\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{5} \cdot \stackrel{8}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}$	$\stackrel{9}{\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{3}}$	$\stackrel{10}{\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{5}}$
Mol. Wt.	$346 \cdot 60$	$430 \cdot 57$	468.68	$390 \cdot 61$	$446 \cdot 63$
ϱ meas. (g.cm ${ }^{-3}$)	$1 \cdot 114$	1.167	$1 \cdot 163$	$1 \cdot 132$	$1 \cdot 146$
ϱ calc. (g.cm ${ }^{-3}$)	1.098	1-191	$1 \cdot 167$	1.217	$1 \cdot 170$
Space group	C2	$P 2_{1}$	C2	$P 2_{1} 2_{1} 2_{1}$	$P 2_{1} 2_{1} 2_{1}$
Z	12	2	4	4	8
$a(\AA)^{*}$	$40 \cdot 689$	12.593	25.489	11.337	11.448
$b(\AA)^{*}$	6.907	8.215	8.011	26.796	59.335
$c(\AA) *$	29.046	12.196	$15 \cdot 337$	$7 \cdot 013$	$7 \cdot 468$
α	-	-	-	-	-
β	129.61°	107.86°	121.59°	-	-
γ	-	-	-	-	- 7
$V\left(\AA^{3}\right)$	6289	1201	2668	2130	5073
Solvent	Acetone	Acetone	Ethanol	Ethanol	Acetone

6. 5β-Cholan-24-ol
7. 5β-Cholanic acid- $3 \alpha, 7 \alpha, 12 \alpha$-triol sodium salt (cholic acid sodium salt)
8. 5β-Cholanic acid- $3 \alpha, 7 \alpha, 12 \alpha$-triol methyl ester. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
9. 5β-Cholanic acid-3 α-ol methyl ester (lithocholic acid methyl ester)
10. 5β-Cholanic acid-3 α-ol-12-one acetate methyl ester

* ± 0.008

11. 5β-Cholanic acid-3 α-ol-acetate methyl ester .
12. 5β-Cholanic acid- $3 \alpha, 7 \alpha$-diol-12-one diacetate
13. 5β-Cholanic acid-3 $\alpha, 7 \alpha, 12 \alpha$-triol 3,7 -diacetate methyl ester . $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$

[^0]: * This investigation was supported in part by a P.H.S. research grant (CA-06183) from the National Cancer Institute, Public Health Service.

